
Applications of Category Theory in Modern JavaScript

John Bender
john.m.bender@gmail.com

April, 2012

Abstract
The jQuery JavaScript library, used on more than 55% of Alexa’s
top 10,000 websites [1] makes the manipulation of HTML docu-
ments easy and intuitive through fluent method chaining and an in-
tuitive API design. An unfortunate side effect of these user friendly
features is that they often incur an otherwise unnecessary perfor-
mance overhead. While JavaScript execution in desktop browsers
has become fast enough to hide much of the problem, the grow-
ing complexity of HTML documents and the ubiquity of web en-
abled mobile devices continue to make performance an important
concern when developing JavaScript applications. We address this
issue by proposing a category theoretic view of the relationship be-
tween jQuery and the Document Object Model. From that view we
derive a set of alterations to the jQuery library and demonstrate
the performance benefits that result. Additionally we show how
the second functor law suggests a set of JavaScript functions and
jQuery methods that can be optimized using loop fusion.

Categories and Subject Descriptors D.2.7 [Distribution, Main-
tenance, and Enhancement]: Enhancement; D.2.2 [Design Tools
and Techniques]: Software libraries

General Terms Performance, Design

Keywords JavaScript, Category Theory, Loop Fusion, Optimiza-
tion

1. Introduction
JavaScript that leverages the jQuery library can often be identified
by its fluency. That is, users are encouraged to make alterations
to jQuery objects by “chaining” methods and jQuery method au-
thors are counseled to always return the jQuery object on which
the method was called to facilitate this form of serial method invo-
cation [2]. In Listing 1, all HTMLDivElements (DOM elements
hereafter) in the document are retrieved using the "div" CSS se-
lector and used to instantiate a jQuery “object-set”. They are then
hidden, altered to remove the data-foo attribute, and shown again.
Each method invocation, hide, addClass, and show alters all the
elements in the jQuery object-set and then provides them for the
next method to do the same. More concretely, if n methods of this
form are invoked in sequence it will require n full iterations over
the object-set. This presents an opportunity to exploit loop fusion
for a possible peformance gain.

[Copyright notice will appear here once ’preprint’ option is removed.]

Additionally many of the methods that perform element manip-
ulations include user friendly extra invocation patterns. Listing 2
shows two functionally equivelant examples for the removeAttr
method. To support the second example, the method must parse the
first argument in both cases to check for a whitespace delimitted
list. Given that this is a common occurence in the library’s element
manipulation methods, this too represents an opportunity for per-
formance improvements.

In the interest of exploiting these two opportunities for improve-
ment we introduce the following:

1. We introduce category theory and define two novel categories
Html and Jqry along with a Functor that maps from Html
to Jqry. In doing so we provide a rigorous definition of the
methods that can be optimized with loop fusion. We also find
a clear deliniation between the Html morphisms and the user
friendly layer that their Jqry counterparts add.

2. We propose a backward compatible set of alterations and addi-
tions to the jQuery library based on the separation of function-
ality suggested by these new categories. The result is reduced
load times and faster performance for advanced users willing to
sacrifice the additional user friendly features.

3. We construct a simple and unobtrusive utility for jQuery devel-
opers that will alert them to opportunities to optimize method
chains and leverage the propsed API additions to improve ap-
plication performance.

2. jQuery Object Methods
A short discussion of two important attributes required in the con-
struction of jQuery methods will aid in understanding the forthcom-
ing categories. The first is the context in which jQuery methods are
expected to operate. That is, the value of this within jQuery meth-
ods is an instance of a jQuery object-set, a set of DOM elements.

1 //each method returns the mutated jQuery object

2 jQuery("div").hide().removeAttr("data -foo").show();

Listing 1. Sample method chain

1 // user "unfriendly"

2 jQuery("div")

3 .removeAttr("data -foo")

4 .removeAttr("data -bar");

5

6 // user friendly

7 jQuery("div")

8 .removeAttr("data -foo data -bar");

Listing 2. User friendly overhead

Identifying jQuery Performance Optimizations 1 2012/8/14

1 jQuery.fn.sampleWhileForm = function (){

2 var length = this.length;

3

4 while(length --){

5 var domElement = this[length];

6

7 // ...

8 // alteration of domElement

9 // ...

10 }

11 };

12

13 // invocation

14 $("div").sampleWhileForm ();

Listing 3. Sample jQuery method

Though that context can be set manually, it’s most often defined
by assigning the method to a property on the jQuery object proto-
type jQuery.fn. The second is the behavior of jQuery methods, in
that each must extract DOM elements from the jQuery object-set to
perform any meaningful work. This is generally done on either the
first element or the whole set depending on the method. For the pur-
poses of our work we are primarily concerned with those methods
that opperate on the wholes set. In Listing 3 on line 1 is an example
of a method that exhibits these two attributes, while line 14 shows
the invocation pattern that assures the context is properly set.

The pattern is relatively simple but, as we will illustrate, it con-
flates two distinct types of opperations: those on DOM Elements
and those on jQuery object-sets.

3. Categories
To define Html and Jqry we must define the classes ob(C) of
objects and hom(C) of morphisms for each. Then for both we must
provide the identity morphism, show that composition is possible,
show that composition is associative, and finally that each set of
morphisms is closed under composition [3, p. 1]. To start we will
address Html.

We define the objects of Html as the set of JavaScript objects
that represent HTML elements outlined in the World Wide Web
Constortium’s HTML5 Element specification [4]. More intuitively,
the objects are the result of querying the DOM in browsers com-
plying with the specification using a method like querySelector
(Listing 4).

We define the morphisms of Html as the set of JavaScript func-
tions taking a single DOM element JavaScript object and returning
one of the same (that is any object in ob(Html)). Generally these
functions manipulate the DOM element through the dot method in-
vocation of JavaScript objects.

Next, we define the identity function for Html in the manner
you would expect (Listing 5, line 1). The composition operation
is nearly as simple, returning a new closure that will process the
function execution in the expected order (See Appendix B for an
example):

1 document.querySelector("#sample");

2 document.querySelectorAll("#sample")[0];

3 document.getElementById("sample");

Listing 4. Sources of Html objects

cmps(f, cmps(g, h))(x) = cmps(cmps(f, g), h)(x)

cmps(f, g(h(x))) = cmps(f(g), h(x))

f(g(h(x))) = f(g(h(x)))

Figure 1. Reduction of composition

To show associativity it suffices that the reduction remains
the same for different associations (Figure 1) and we know that
the morphisms in Html are closed under composition because
the source and target objects for each morphism both exist in
ob(Html)

To define Jqry we must demonstrate the same properties. The
class ob(Jqry) has as its members all jQuery objects. The class
hom(Jqry) is all morphisms from jQuery objecst to jQuer y
objects. As before we first define the identity function and then the
composition operation (Listing 6).

Identity in Jqry is different from its Html counterpart in that
it relys on this as an implicit parameter. jQuery.cmps leverages
JavaScript’s apply to manually define the context in which its ar-
gument functions will run, thereby simulating the context equive-
lant of argument passing. It is defined in the jQuery namespace
only for the sake of differentiating it from cmps in later listings
and it needs no context for operation. Again, we take associativity
to be evident by reduction and we know that Jqry morphisms are
closed under composition because the source and target objects are
the same.

Next we define a Functor from Html to Jqry which consists of
two operations. The first is the invocation of the jQuery function
with a raw DOM element which returns a jQuery object set wrap-
ping the element (Listing 7, line ??). The second uses jQuery’s map
helper inside a new closure that expects a jQuery object as its exe-
cution context. map will pull each DOM element out of the jQuery
object-set (this) and pass it to the callback provided as its second
argument.

The Functor must also preserve identity and composition [3, p.
36]. The preservation of identity is clear. Wrapping a DOM element
returned by the identity Html morphism with the functor’s first
operation produces the same result as invoking the Jqry identity
morphism on an already wrapped DOM element (Listing 8, Line
2).

Preserving composition is more subtle. While the final results
of either side of the equivelance (Listing 8 line 5) will be identi-
cal, the side effects of DOM manipulations along with the iterative
nature of jQuery methods mean that the order of invocation can be
significant. In the original method chain example (Listing 1) the in-
vocation order will perform each opperation on the complete set of
elements one method at a time. If it is important to the developer
that all the elements be hidden before performing any operations,
composition of the Html morphisms violates the equivelance. Al-

1 function id(a) {

2 return a;

3 }

4

5 function cmps(f, g) {

6 return function(a) {

7 return f(g(a));

8 };

9 }

Listing 5. Identity and Composition in Html

Identifying jQuery Performance Optimizations 2 2012/8/14

(1) F : Html→ Jqry

(2) ob(Jqryh) = ob(Jqry)

(3) hom(Jqryh) = {F (f) | f ∈ hom(Html)}
(4) hom(Jqryh) (hom(Jqry)

Figure 2. Jqry Subcategory Dependency

ternately if the developer only cares that the opperations take place
on each element in the original order then the equivelance holds.
We provide more detail on this in Section 5.

4. Splitting jQuery in Two
A close examination of the functor exposes an interesting relation-
ship between Html and Jqry. Those Jqry morphisms that manip-
ulate DOM elements (there are those that operate on the set itself)
can always be described in terms of jQuery.map and an Html
morphism. Said another way, there is a subcategory Jqryh where
hom(Jqryh) can be defined entirely with hom(Html) and our
functor (Figure 2).

Though this relationship clearly exists in the abstract, the im-
plementation of DOM manipulation methods in jQuery rarely ex-
emplifies it. The code that would otherwise be defined in an Html
morphism is most often found mixed into a Jqry morphism. As an
example, the jQuery.fn.removeProp method mixes the deletion
of DOM element properties with the extraction of those elements
from the jQuery object-set (Listing 9, line 2). Deconstructing the
mixed together methods along the lines suggested by the depen-
dency presents an opportunity for improvement on a few fronts.

One improvement comes as a consequence of separating the
Html morphism from each morphism in hom(Jqryh) and pro-
viding them to the developer directly as a subset of the jQuery API.
That is, if the developer only needs the Html morphism because
they are willing to use the standard DOM API for element selec-
tion along with JavaScript’s basic looping constructs it’s possible
to significantly reduce the JavaScript payload size.

[TODO] find actual payload reduction for the library or some
significant subset

[TODO] find and discuss the overhead in additional file size for
the existing library

In addition to a file size reduction, there are two possible per-
formance improvements that fall out of this separation. The first is
a small reduction in the overhead imposed by “rewrapping” DOM
elements with the jQuery method which is a common idiom in
jQuery applications. In the looping methods (e.g. jQuery.map and
jQuery.each) and event bindings the object passed into the call-
back is a raw DOM element and developers often create a one el-
ement jQuery object-set to gain access to the easier-to-use DOM
manipulations. Assuming that these same DOM manipulations are
available, the rewrapping can be avoided thereby improving perfor-
mance.

1 jQuery.fn.id = function () {

2 return this;

3 };

4

5 jQuery.cmps = function(f, g){

6 return function () {

7 return f.call(g.call(this));

8 };

9 };

Listing 6. Identity and Composition in Jqry

[TODO] gather performance data for wrapping overhead, no-op
is faster but how much matters

The second performance improvement requires some additional
clarification of the roles of both Jqry and Html morphisms. In List-
ing 2, jQuery.fn.removeAttr supports two invocation patterns.
We propose that in abstracting the Html morphism from within
methods like jQuery.fn.removeAttr a single, canonical invoca-
tion pattern be selected and that support for others be retained in
the associated Jqry morphism. In the aforementioned example that
would translate to support for the removal of a single attribute in
the Html morphism. The result is a significantly less complex and
more performant execution path in many cases.

[TODO] graph sample performance data from removeAttr,
eventually include larger subset of data

5. Fusing Method Chains
IN PROGRESS Assuming the second equivelance holds it’s useful
to view and actual invocation of the functions created on both sides.
The second, that leverages the more familiar chained method form
(Listing 8 line ??)

When the second Functor law holds we can say with complete
confidence that two morphisms in hom(Html) composed and
then promoted into hom(Jqry) are equivalent to the composition
or chaining of two morphism in hom(Jqry). As a performance
optimization the choice of the former is simple form of loop fu-
sion or deforestation where the intermediate data structure is the
mutated jQuery object set [7]. IN PROGRESS

[TODO] Discuss the function call overhead reduction, show
performance numbers from existing methods with abstracted DOM
manipulations.

1 // ob(Html) -> ob(Jqry)

2 jQuery(document.querySelector("#sample"));

3

4 // hom(Html) -> hom(Jqry)

5 function functor(morphism){

6 return function (){

7 return jQuery.map(this , morphism);

8 };

9 }

Listing 7. Functor from Html to Jqry

Identifying jQuery Performance Optimizations 3 2012/8/14

Chrome 18 Chrome 19 Chrome 21 Firefox 12 iPhone 5.1

0

2,000

4,000

6,000

1,658

5,765 5,877

590

236

1,573

5,318 5,358

557

227

O
pe

ra
tio

ns
/S

ec
jQuery.fn.removeAttr performance

Composed Chained

6. Relaxing The Functor Definition
[TODO] Disucss using methods in serial instead of the cmps op-
eration. Discuss the reality of side effects as it relates to preserving
identity and composition. Discuss method chains as composition to
avoid extra function call overhead which represents the real perfor-
mance win here.

7. Haskell’s List Functor
[TODO] Discuss the relationship here with fmap and haskell’s list
functor. jQuery’s objec-set behavior is clearly a list. Cite previous
work in that area as an influence.

8. Guidelines to Facilitate Optimization
Given that the loop fusion optimization requires the composition of
at least two morphisms from Html and that functionality of those
morphisms is always provided to the end user as the lifted version
that exists in Jqry, we propose the following guidelines.

1. All methods defined on the jQuery object prototype jQuery.fn
that leverage jQuery.map to lift an Html morphism into Jqry
must provide the underlying morphism as a property for end
users. Since the behavior of a given jQuery method is often too
complex for the end user to determine if it meets the criteria
for loop fusion, this rightly places the onus on the developers
of the jQuery methods to determine and provide the necessary
JavaScript function to the end user for optimization in their
applications.

2. All properties defined for this purpose should exist on the
jQuery method itself to avoid confusion among users wish-
ing to optimize their method chains. We propose composable

1 // preservation of identity

2 jQuery(id(elem)) == jQuery(elem).id();

3

4 // preservation of composition

5 functor(cmps(f, g))

6 == jQuery.cmps(functor(f), functor(g));

Listing 8. Satisfying the Functor Laws

1 // exists in hom(Jqry)

2 jQuery.fn.removeProp = function(name) {

3 name = jQuery.propFix[name] || name;

4

5 return this.each(function(elem) {

6 elem[name] = undefined;

7 delete elem[name];

8 });

9 };

Listing 9. Satisfying the Functor Laws

as the property name. This guarantees that jQuery methods re-
main the discreet units of functionality extension that they are
today, and the proposed property name is semantically useful.

3. Developers should, wherever possible, document and test both
the Html morphism and its Jqry incarnation as discrete pieces
of functionality to ensure that each Html morphism works in-
dependent of its Jqry counterpart. This ensures that the indi-
vidual properties of both the Jqry and Html morphisms will
persist across revisions to both.

To assist jQuery method developers in effecting the above we
also propose a small helper function that properly applies map to
an Html morphism, properly forwards arguments in addition to
the initial HTMLElement argument, and sets the composable
attribute. See Appendix C.

9. Library Aided Optimization
The reader will note that the guidelines do not attempt to differ-
entiate the optimizable jQuery methods in any appreciable fashion
other than the the possible existence of the composable prop-
erty. This is a deliberate omission in preference to an automatic
identification of chains with two or more methods that define the
composable property. In fact it is possible to automatically fuse
the underlying JavaScript functions but this incurs a small addi-
tional cognitive overhead and an as yet unresolved performance
degradation (See Appendix D).

[TODO] further discuss automatic fusion and possible benefits
to end users.

[TODO] explore the reasons for the performance degredation
with the automatic approach as it may be relevant to the hand fused
approach.

Instead we propose a small library that will log a warning
any time two or more methods are invoked in sequence when
each provides the composable property. Additionally, it will log
a warning when two or more of these methods occur in a method
chain but are not adjacent. While more detail on one possible
implementation is provided in Appendix E, a short explanation here
may aid interested parties in creating their own implementation.

Newly instantiated jQuery objects derive the bulk of their func-
tionality from the jQuery.fn object defined as their prototype.
jQuery.fn is also the object onto which new jQuery methods,
or Jqry morphisms, are defined. Consequently it’s possible to cre-
ate a proxy object that can be inserted between a jQuery instance
and jQuery.fn in the prototype chain at runtime to record the
sequence of method invocations and report opportunities for op-
timization.

[TODO] add diagram to illustrate prototype chain alteration

Taking
f−⇀ to represent the automatic prototype look-up of f on

the target, and
f7−→ to represent a invocation of f on the target by

Identifying jQuery Performance Optimizations 4 2012/8/14

(5) jQuery
f−−⇀ jQuery.fn

(6) jQuery
f−−⇀ Proxy

f7−−→ jQuery.fn

the source object we have diagram 5 as the default jQuery behavior
and diagram 6 as the desired behavior.

The Proxy object must define it’s own version of each and
every function property of the jQuery.fn prototype object. This
allows it to count invocations of those functions and for any count
greater than one raise a warning. It also allows it to invoke the
method of the same name on the jQuery.fn when no count is
recorded, IE

f7−→. Additionally the size of the jQuery object-set can
be taken into account as part of configuration, as small sets of
objects won’t see the same benefits from composition.

The primary advantage of this approach is that it is entirely
unobtrusive and requires nothing more than the inclusion of the
library in an HTML document following the inclusion of jQuery
itself. In this way it encourages developer adoption through ease of
use.

10. jQuery Project Results
[TODO] discuss standard with jQuery core team, push for imple-
mentation in core. Talk submitted to jQuery Conference in June
2012 with this goal in mind

11. Client Project Results
[TODO] discuss implementation with subject application creators
using jQuery. Candidates: Originate Labs, The Filament Group,
Append To, Bocoup, Adobe

12. Further Work
[TODO] discuss further work in applying other category theo-
retic constructs to the two categories defined here. eg, jQuery is
a Monoid, examine cartesian closed categories.

13. Conclusion
Here we have clearly defined a common idiom in JavaScript us-
ing the jQuery library that can be targeted for performance opti-
mization with a minimum of effort by developers. In addition we
have established a small set of guidelines that jQuery extenders and
plug-in authors can use to assist the consumers of their software in
performing this optimization and provided the framework for an
unobtrusive library that can automatically identify areas of poten-
tial performance degradation. In future work we hope to pursue the
automatic optimization of jQuery method chains using lazy seman-
tics to further reduce developer involvement while continuing to
realize the advantages of loop fusion.

A. Appendix A: Each-form
Another equally popular form of jQuery method construction lever-
ages the jQuery built-in each method. Converting the example
from Figure ?? yields Figure 3. The key difference being the expec-
tation that a side effect will result from the closure that somehow
leverages the information of the index and/or the HTMLElement.

B. Appendix B: Composition of Html Morphisms
Examples of what composition of Html morphisms will look like
can server to reassure the reader that it behaves as necessary. In

jQuery.fn.eachForm = function(){
return this.each(function(index, htmlElement) {

// some side effectful computation
});

};

Figure 3. General each-form

Figure 4 an anchor element has its foo and baz attributes set by
the newly composed Html morphism.

function a(elem){
elem.setAttribute("foo", "bar");
return elem;

}

function b(elem){
elem.setAttribute("baz", "bak");
return elem;

}

var elem = document.getElementById("example-anchor");
elem.getAttribute("foo"); // undefined
elem.getAttribute("baz"); // undefined

elem = compose(a, b)(elem);
elem.getAttribute("foo"); // "bar"
elem.getAttribute("baz"); // "bak"

Figure 4. Preserving identity and composition

C. Appendix C: Mapable Helper Function
The jQuery.mapable helper described in Figure 5 provides a
function that can be assigned to a property on the jQuery.fn ob-
ject. It also “tags” the function by setting its composable attribute
to the original Html morphism thereby alerting developers and any
libraries wishing to track optimizable Jqry morphisms. Addition-
ally it does the work of forwarding any and all arguments as addi-
tional parameters to the Html morphism.

jQuery.mapable = function(htmlMorphism){
var jqryMorphism = function(){

var args = arguments;

jQuery.map(this, function(elem){
var newArgs = Array.prototype.slice(args);
newArgs.unshift(elem);
htmlMorphism.apply(elem, newArgs);

});
};

jqryMorphism.composable = htmlMorphism;
return jqryMorphism;

}j

Figure 5. The mapable helper function

D. Appendix D
An initial attempt was made to alter jQuery to support the de-
ferral of method execution until being forced. The idea was to
accumulate method calls that defined the composable property
(htmlMorphism in the source) and then do the composition and
execution all at once when necessary. While this is possible in
JavaScript, the performance overhead of forwarding arguments for

Identifying jQuery Performance Optimizations 5 2012/8/14

method invocations like those in Figure 6 down to the Html mor-
phism in conjunction with the capability of modern JavaScript vir-
tual machines to compile simple loops to machine code negated any
positive effect of limiting the total iterations. You can view the re-
sults of a simple performance test at jsperf.com. You can also view
the extension required to effect the lazy optimization at github.com.
Further work and testing is required to completely rule out the pos-
sibility of this approach

jQuery("div").foo("bar", "baz").force();

Figure 6. Forwarding string arguments

E. Appendix E
A basic implementation of the object proxy described in Section 9
can be found at GitHub along with a simple counting and logging
mechanism for identifying possible optimizations.

References
[1] BuiltWith.com, jQuery Usage Statistics, http://blog.builtwith.

com/2011/10/31/jquery-version-and-usage-report/

[2] jQuery.com, Plugin Authoring, Maintaining Chainability, http:
//docs.jquery.com/Plugins/Authoring#Maintaining_
Chainability

[3] Benjamin C. Pierce, Basic Category Theory for Computer Scientists.
MIT Press, Massachusets, First Edition, 1991.

[4] www.w3.org, Document Object Model (DOM) Level 3 Core Specifica-
tion, http://dev.w3.org/html5/spec/elements.html

[5] W3.org, HTMLElement interface specification, http://dev.w3.
org/html5/spec/elements.html#htmlelement

[6] W3.org, HTMLElement list, http://dev.w3.org/html5/markup/
elements.html#html-elements

[7] P Wadler, Deforestation: Transforming programs to eliminate trees.
Theoretical computer science, Elsevier, 1990.

Identifying jQuery Performance Optimizations 6 2012/8/14

http://jsperf.com/lazy-loop-fusion-vs-traditional-method-chaning/5
https://github.com/johnbender/jquery-lazy-proxy/blob/79ab61e22547169d6f392512f782df2e29362ebc/lazy.js
https://github.com/johnbender/jquery-lazy-proxy/blob/79ab61e22547169d6f392512f782df2e29362ebc/lazy.js
http://blog.builtwith.com/2011/10/31/jquery-version-and-usage-report/
http://blog.builtwith.com/2011/10/31/jquery-version-and-usage-report/
http://docs.jquery.com/Plugins/Authoring#Maintaining_Chainability
http://docs.jquery.com/Plugins/Authoring#Maintaining_Chainability
http://docs.jquery.com/Plugins/Authoring#Maintaining_Chainability
http://dev.w3.org/html5/spec/elements.html
http://dev.w3.org/html5/spec/elements.html#htmlelement
http://dev.w3.org/html5/spec/elements.html#htmlelement
http://dev.w3.org/html5/markup/elements.html#html-elements
http://dev.w3.org/html5/markup/elements.html#html-elements

	Introduction
	jQuery Object Methods
	Categories
	Splitting jQuery in Two
	Fusing Method Chains
	Relaxing The Functor Definition
	Haskell's List Functor
	Guidelines to Facilitate Optimization
	Library Aided Optimization
	jQuery Project Results
	Client Project Results
	Further Work
	Conclusion
	Appendix A: Each-form
	Appendix B: Composition of Html Morphisms
	Appendix C: Mapable Helper Function
	Appendix D
	Appendix E

